{"created":"2023-06-19T10:03:39.545032+00:00","id":12194,"links":{},"metadata":{"_buckets":{"deposit":"844400f7-a4d4-4e18-b6e2-a197d500ebd9"},"_deposit":{"created_by":17,"id":"12194","owners":[17],"pid":{"revision_id":0,"type":"depid","value":"12194"},"status":"published"},"_oai":{"id":"oai:kwmw.repo.nii.ac.jp:00012194","sets":["7:11:71"]},"author_link":["53614","53613","62728","62729"],"item_1_alternative_title_20":{"attribute_name":"その他(別言語等)のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"リーマン面上の有限要素解に対する最大値の原理, II"}]},"item_1_alternative_title_5":{"attribute_name":"論文名よみ","attribute_value_mlt":[{"subitem_alternative_title":"リーマン メン ジョウ ノ ユウゲン ヨウソ カイ ニ タイスル サイダイチ ノ ゲンリ II"}]},"item_1_biblio_info_14":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1993","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"193","bibliographicPageStart":"183","bibliographicVolumeNumber":"3","bibliographic_titles":[{"bibliographic_title":"川崎医療福祉学会誌"}]}]},"item_1_creator_8":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Mizumoto, Hisao","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"62728","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Hara, Heihachiro","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"62729","nameIdentifierScheme":"WEKO"}]}]},"item_1_description_1":{"attribute_name":"ページ属性","attribute_value_mlt":[{"subitem_description":"P(論文)","subitem_description_type":"Other"}]},"item_1_full_name_7":{"attribute_name":"著者別名","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"53613","nameIdentifierScheme":"WEKO"}],"names":[{"name":"水本, 久夫"}]},{"nameIdentifiers":[{"nameIdentifier":"53614","nameIdentifierScheme":"WEKO"}],"names":[{"name":"原, 平八郎"}]}]},"item_1_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.15112/00012183","subitem_identifier_reg_type":"JaLC"}]},"item_1_publisher_23":{"attribute_name":"公開者","attribute_value_mlt":[{"subitem_publisher":"川崎医療福祉学会"}]},"item_1_source_id_13":{"attribute_name":"雑誌書誌ID","attribute_value_mlt":[{"subitem_source_identifier":"AN10375470","subitem_source_identifier_type":"NCID"}]},"item_1_source_id_19":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0917-4605","subitem_source_identifier_type":"ISSN"}]},"item_1_text_10":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"Department of Medical Informatics, Faculty of Medical Professions, Kawasaki University of Medical Welfare"},{"subitem_text_language":"en","subitem_text_value":"Department of Information Science, Faculty of Science, Shimane University"}]},"item_1_text_22":{"attribute_name":"その他(別言語)の雑誌名","attribute_value_mlt":[{"subitem_text_value":"Kawasaki medical welfare journal"}]},"item_1_text_9":{"attribute_name":"著者所属(日)","attribute_value_mlt":[{"subitem_text_value":"川崎医療福祉大学医療技術学部医療情報学科"},{"subitem_text_value":"島根大学理学部情報科学科"}]},"item_1_textarea_11":{"attribute_name":"抄録(日)","attribute_value_mlt":[{"subitem_textarea_value":"前の論文[3]では, 縁をもつコンパクトなリーマン面Ω上で定義された偏微分方程式 : Δu-qu=f の有限要素解に対する最大最小値の原理を確立したが, 本論文では, 論文[3]の結果を改良し, 拡張する.まず, Ωの幅hの三角形分割Kを作成し, K上の要素関数のクラスS=S(K)を導入する.境界∂Ωの二つの部分C_1,C_2への分割に対して, 境界値問題 : Ω上でΔu-qu=f, C_1上でu=x, C_2に沿って*du=0の有限要素近似ω_h∈Sを定義する, ここで, *duは, duの共役微分を表す.Kの2-単体のすべての内角は≦π/2であると仮定する.論文[3]の仮定より弱い, この仮定のもとで, 十分小さいh>0に対して, 不等式 │ω_h│≦exp(4πM/(sinθ)・max__Ω q)(max__ │x│+2/(sinθ)∬_Ω│f│dxdy) が成り立つことが示される.ここで, θはKのすべての2-単体の内角の最小値, Mは定数である.この不等式は, 有限要素解の理論解に対する誤差評価をするときに, 非常に有用となるものである."}]},"item_1_textarea_12":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_textarea_language":"en","subitem_textarea_value":"In the previous paper [3] we established the maximum principles for the finite element solutions of the partial differental equation : Δu-qu=f on a compact bordered Riemann surfaceΩ^^-.In the present paper we shall improve and extend the results in the paper [3].First we construct a triangulation K of Ω^^- with width h and introduce a class S=S(K) of element functions on K.For a partition to two parts C_1 and C_2 of the boundary ∂Ω, we define the finite element approximation ω_h∈S of the boundary value problem : Δu-qu=f on Ω, u=x on C_1 and*du=0 along C_2 where by *du we denote the conjugate differential of du.We assume that all angles of 2-simplices of K are ≦π/2.Under the assumption weaker tkan one in the paper [3], we shall exhibit that the inequality │ω_h│≦exp(4πM/(sinθ)・max__Ω q)(max__ │x│+2/(sinθ)∬_Ω│f│dxdy) holds for sufficiently small h, where θ is the smallest value of all angles of 2-simplices of K and M is a constant.The lasu inequality will be very useful to obtain error estimates of the finite element solutions."}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2014-01-31"}],"displaytype":"detail","filename":"KJ00000192455.pdf","filesize":[{"value":"603.7 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"PDF","url":"https://kwmw.repo.nii.ac.jp/record/12194/files/KJ00000192455.pdf"},"version_id":"a6438c8c-8d36-4c4c-9aa5-3b1a6393a61f"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"finite element approximation","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Riemann surface","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Maximum Principles for Finite Element Solutions on a Riemann Surface, II","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Maximum Principles for Finite Element Solutions on a Riemann Surface, II","subitem_title_language":"en"}]},"item_type_id":"1","owner":"17","path":["71"],"pubdate":{"attribute_name":"公開日","attribute_value":"1993-01-01"},"publish_date":"1993-01-01","publish_status":"0","recid":"12194","relation_version_is_last":true,"title":["Maximum Principles for Finite Element Solutions on a Riemann Surface, II"],"weko_creator_id":"17","weko_shared_id":17},"updated":"2023-06-19T11:05:03.742507+00:00"}