{"created":"2023-06-19T10:03:35.945744+00:00","id":12108,"links":{},"metadata":{"_buckets":{"deposit":"b254b9d1-31c3-4ec9-8845-6aa4c169c74e"},"_deposit":{"created_by":17,"id":"12108","owners":[17],"pid":{"revision_id":0,"type":"depid","value":"12108"},"status":"published"},"_oai":{"id":"oai:kwmw.repo.nii.ac.jp:00012108","sets":["7:9:72"]},"author_link":["53097","53098"],"item_1_biblio_info_14":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1992","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"275","bibliographicPageStart":"267","bibliographicVolumeNumber":"2","bibliographic_titles":[{"bibliographic_title":"川崎医療福祉学会誌"}]}]},"item_1_creator_8":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Mizumoto, Hisao","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"53097","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Hara, Heihachiro","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"53098","nameIdentifierScheme":"WEKO"}]}]},"item_1_description_1":{"attribute_name":"ページ属性","attribute_value_mlt":[{"subitem_description":"P(論文)","subitem_description_type":"Other"}]},"item_1_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.15112/00012097","subitem_identifier_reg_type":"JaLC"}]},"item_1_publisher_23":{"attribute_name":"公開者","attribute_value_mlt":[{"subitem_publisher":"川崎医療福祉学会"}]},"item_1_source_id_13":{"attribute_name":"雑誌書誌ID","attribute_value_mlt":[{"subitem_source_identifier":"AN10375470","subitem_source_identifier_type":"NCID"}]},"item_1_source_id_19":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0917-4605","subitem_source_identifier_type":"ISSN"}]},"item_1_text_10":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"Department of Medical Informatics, Faculty of Medical Professions, Kawasaki University of Medical Welfare"},{"subitem_text_language":"en","subitem_text_value":"Department of Information Science, Faculty of Science, Shimane University"}]},"item_1_text_22":{"attribute_name":"その他(別言語)の雑誌名","attribute_value_mlt":[{"subitem_text_value":"Kawasaki medical welfare journal"}]},"item_1_textarea_11":{"attribute_name":"抄録(日)","attribute_value_mlt":[{"subitem_textarea_value":"この論文では, 縁をもつコンパクトなリーマン面Ω^^-上で定義された偏微分方程式 : Δu-qu=fの有限要素解に対する最大最小値の原理を確立する.まず, Ωの幅hの三角形分割Kを作成し, K上の要素関数のクラス S=S(K)を導入する. 境界∂Ωの二つの部分C_1,C_2への分割に対して, 境界値問題 : Ω上でΔu-qu=f, C_1上でu=χ, C_2上で∂u/∂n=0の有限要素近似ωh∈Sを定義する. ここで, ∂u/∂nは, uのC_2上での内法線方向微分を表す.この論文の主要結果は, つぎのように述べられる : 十分に小さいh>0に対して, 不等式 |ω_h|≦ max __C_1χ + 1/sin θ∬_Ω|f| dxdyが成り立つ, ここで, θはKのすべての2-単体の内角の最小値である.この不等式は, 有限要素解の理論解に対する誤差評価をするときに, 非常に有用となるものである."}]},"item_1_textarea_12":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_textarea_language":"en","subitem_textarea_value":"In the present paper we establish the maximum and minimum principles for the finite element approximate solutions of the partial differential equation : Δu-qu=f on a compact bordered Riemann Surface Ω^^-. First we construct a triangulation K of Ω with width h and introduce a class S= S (K) of element functions on K. For a partition to two parts C_1 and C_2 of the boundary ∂Ω, we define the finite element approximation ω_h∈S of the boundary value problem : Δu-qu = f on Ω, u =χ on C_1,and ∂u/ ∂n = 0 on C_2,where by ∂u/∂n we denote the inner normal derivative of u on C_2. The main result in the present paper is stated as follows : For sufficiently small h>0,the inequality |ω_h|≦ max __C_1χ + 1/sin θ∬_Ω|f| dxdy holds, where θ is the smallest value of all angles of the 2-simplices of K. The last inequality will be very useful to obtain error estimates of the finite element solutions for the theoretic ones."}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2014-01-31"}],"displaytype":"detail","filename":"KJ00000192350.pdf","filesize":[{"value":"491.7 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"PDF","url":"https://kwmw.repo.nii.ac.jp/record/12108/files/KJ00000192350.pdf"},"version_id":"cad587d5-aa56-425f-b816-f0d0e753127a"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"finite element approximation","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Riemann surface","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Maximum Principles for Finite Element Solutions on a Riemann Surface","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Maximum Principles for Finite Element Solutions on a Riemann Surface","subitem_title_language":"en"}]},"item_type_id":"1","owner":"17","path":["72"],"pubdate":{"attribute_name":"公開日","attribute_value":"1992-01-01"},"publish_date":"1992-01-01","publish_status":"0","recid":"12108","relation_version_is_last":true,"title":["Maximum Principles for Finite Element Solutions on a Riemann Surface"],"weko_creator_id":"17","weko_shared_id":17},"updated":"2023-06-19T11:07:34.122738+00:00"}