Kawasaki Journal of Medical Welfare Vol. 7, No. 1, 2001 1-32

Original Paper

Determination of the Moduli of Ring Domains
by Finite Element Methods

Hisao MIZUMOTO and Heihachiro HARA"

(Accepted March 21, 2001)

Key words : finite element methods, moduli of ring domains

Abstract

In the present paper we aim to establish a method of finite element approximations by which
we can determine the moduli of thin ring domains and thick ones with critical boundary points.
Our method matches the abstract definition of Riemann surfaces, and also will offer a new
technique of high practical use in numerical calculation. It is characteristic of our method that
we adopt ordinary triangular meshes and linear elements on a subregion of an image by a local
parameter of every fixed parametric disk, our approximating functions satisfy the boundary
conditions exactly even in the case of curvilinear boundary arcs, and express singular property
exactly near critical boundary points. Hence the approximations of high precision are obtained,
and the fairly good upper and lower bounds to the moduli can be evaluated. It should be noted
that we do not adopt any so-called refined or curvilinear mesh near critical boundary points.!

Introduction

In the present paper we aim to establish a method of finite element approximations by which we can
determine the moduli of thin ring domains and thick ones with critical boundary points (cf. the present
authors [10],[11] and [14] for other treatments). Our method matches the abstract definition of Riemann
surfaces, and also will offer a new technique of high practical use in numerical calculation.

Let © be a ring subdomain of a Riemann surface W whose closure 2 is a compact bordered subregion
of W. We assume that two components C and C; of the boundary 99 of Q consist of piecewise analytic
closed curves which satisfy some restricted conditions (see §1.1).

The ring domain 2 can be conformally mapped onto an annulus A = {w | 1 < |w| < R} for a suitably
chosen R(> 1) so that Cp and C; are mapped onto I'g = {w | |[w| = 1} and I'; = {w | |w| = R} respectively.
Then the modulus M () of the ring domain Q is defined by M (Q2) = log R, which is uniquely determined
by Q. Our aim is to determine M ().

Let F be the class of all continuous functions v on Q with v = 0 on Cy and v = 1 on C; which satisfy
some restricted conditions (see §3.2). Let F be the class of all locally single-valued continuous functions v
on Q which satisfy the condition f ¢ v =1 for every closed curve C homotopic to C; and some restricted
conditions. Then the modulus M () is characterized by minimal properties

27 . M(Q .
——— =min D(v) and @) = min D(v),
M (Q) vEF 2m vE€F
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where by D(v) we denote the Dirichlet integral of v over 2. The functions u and % which minimize the
Dirichlet integrals in the classes F and F respectively, are called the harmonic solutions in F and F
respectively.

By making use of the relations (0.1), Opfer [17], [18] and Gaier [4] presented methods to obtain upper
and lower bounds for the modulus M(f)) in the case of some restricted domains 2 (e.g. lattice domains,
etc.) by the finite difference approximations. We shall present a method to obtain fairly good upper and
lower bounds for M () by our finite element approximation even in the case of a thin or thick ring domain
 with curvilinear boundary arcs, and with critical boundary points.

It is characteristic of our method that we adopt ordinary triangular meshes and linear elements on a
subregion of an image by a local parameter of every fixed parametric disk, our approximating functions of
u and @ satisfy the boundary conditions exactly even in the case of curvilinear boundary arcs, and express
singular property exactly near critical boundary points (see §3.2 and §3.3). Hence the approximations
of high precision of u and % are obtained, and the fairly good upper and lower bounds to M(Q) can be
evaluated. It should be noted that we do not adopt any so-called refined or curvilinear mesh near critical
boundary points.

§1 is devoted to construction of triangulations K and K’ with width h of two kinds. K is a triangulation
of Q and K' is a modification of K.

In §2, we introduce and investigate four classes of element functions on K and K': the comparable classes
S = S(K) and S = S(K) (with u and @ resp.) and the computable classes S' = S'(K') and §' = S'(K").
Sc Fand S C F,and S’ and S’ are collections of modifications vy, = F(vp) of v, € S and vy, € S
respectively, where F' defines a one-to-one mapping of S and S onto S’ and S’ respectively. D(vy,) (v, € S’

or v}, € S') can be numerically calculated. We shall obtain an estimate
(0.2) D(vn) < D(uvy) +(vh),

where €(v},) is a quantity of O(h?) which can be explicitly and numerically calculated if v}, is obtained (see
(iii) of Lemma 2.2).
The finite element approzimations wy, and u}, of uwin S and S’ respectively are defined by the minimalities:

(0.3) D(wp) = min D(vy) and D(ujp) = min D(vy)
v €S ’U;ZESI

respectively. u}, can be obtained by solving a system of linear equations. §3 is devoted to error estimates

of wy and uy, for u. In Theorems 3.1 and 3.2, we obtain error estimates:
(0.4) D(wp —u) < Ch? and D(up—u) < C'h® resp.,

where C and C’ are constants which depend only on the square integral of 2nd-order partial derivatives
of u, the maximum value of partial derivatives of u, the smallest value of interior angles of triangles and

transformations of local parameters. Further, in Theorem 3.2, we obtain an estimate for D(u):

(0.5) D(u) < D(u}) +e(u}) (see (0.2)).

The finite element approximations @, and 4} of @ in S and S’ respectively are defined by the method
analogous to (0.3), and the estimates analogous to (0.4) and (0.5) hold.

Finally, in §4 we apply our results to numerical calculation of the moduli of thin ring domains and thick
ones, and we shall show that calculation results for some concrete ring domains are fairly good. With respect
to the problems of this type, there have been some investigations by means of the Fourier series method

(cf. Gaier and Papamichael [9]), the integral equation method (cf. Symm [23]), the modified Schwarz-
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Christoffel transformation method (cf. Gaier [6], Howell and Trefethen [12]), the domain decomposition
method (cf. Gaier and Hayman [7], [8], Papamichael and Stylianopoulos [20], [21], [22]), the finite difference
method (cf. Gaier [4], [5], Mizumoto [13], Opfer [17], [18]) and the finite element method (cf. Hara and
Mizumoto [10], [11], Mizumoto and Hara [14], Weisel [25], [26], [27]).

Numerical treatments of singularities of functions at critical boundary points have been studied by many
authors. Especially, with respect to treatments related to our method we can refer Babuska, Szabo and
Katz [1], Barnhill and Whiteman [2], Opfer and Puri [19], and Thatcher [24].

§1. Triangulation

1.1 Collection ® of local parameters. Let 2 be a ring subdomain of a Riemann surface W
whose closure  is a compact bordered subregion of W and whose boundary 8 consists of two piecewise
analytic closed curves Cy and C;. Let {p,}s_; be the collection of the critical points defined as the
vertices on 9Q at which the curves 92 are not analytic. Then we assume that there exist parametric disks
Vp (n = 1,--- ,v) with the centers p, and the local parameters z = 9, (p) by which V,, N Q are mapped
onto sectors {|z| < r,}N{0<argz < B,} (0 < B, < 2m, G, # 7).

By ® = {z = ¢;(p), U;; j=1,---,m} we denote a finite collection of local parameters z = ¢;(p) (j =
1,---,m) and parametric disks U; (j = 1,--- ,m) on W which satisfies the following conditions (i) ~ (vi):

(i) By the mapping z = ¢;(p) (j =1,---,m), U; is mapped onto a disk |z| < p;.

(i) Q is covered by {U;}™,.

(iii) If U;NUy # B, then there exists a point p, € U;NUy such that for the mapping ¢ = ¢(2) = @& ogoj_l(z),
the normalization condition |dp(z,)/dz| =1 (2, = ¢;(p.)) is satisfied.

(iv) Each U; (j = 1,--- ,m) contains at most one p, (n =1,---,v) and if p,, € U; then ¢;(p,) = 0.

(v) T U; NnOQ # 0 and U; does not contain any p, (n = 1,---,v), then ¢;(U; N Q) is a half disk
{lz| < pj} N{Imz > 0}. If U; contains some p, (n = 1,---,v), then ¢;(U; N Q) is a sector {|z| <
pitn{0<argz < a;} (0<a; <2rm, a; #n).

(vi) In the latter case of (v), by the mapping ¢ = (p;(p))™*, U; N Q is mapped onto a half disk
{I¢l < pj"/"’} N {Im ¢ > 0}. In this case we define anew z = ¢;(p) and p; by ¢ = (p;(p))™/* and p;r/a"
respectively. Then, the local parameter z = ¢;(p) is no longer conformal at the center of U;.

1.2. Triangulation K associated to ®. For the collection ® of local parameters and parametric
disks defined in §1.1, and for a sufficiently small positive number h, we construct a triangulation K = K*
of Q which satisfies the following conditions (i) ~ (v). This is called a triangulation of Q with width h
associated to ®.

(i) The points p;,- -+ ,p, are carriers of some 0-simplices of K.

(ii) K is the sum of subtriangulations Kj,--- , K,, of K such that each 2-simplex of K belongs to one
and only one K; (j = 1,--- ,m), the carrier |s| of each 2-simplex s of K is contained in U;, and |K| = (.

(iii) If a 1-simplex e € K; does not belong to another K (k # j), or a 1-simplex e belongs to K;NK} (j #
k) and the mapping ¢y o <pj_1 is an affine transformation, then ¢;(e) is a segment and e is said to be linear.

If p;(s) for s € K; (j = 1,--- ,m) is an ordinary triangle, then s is called a natural simplex. Then, by
(iii), each 2-simplex s € K; which has not a common edge with any 2-simplex of another K}, (k # j), is a
natural simplex.

A 2-simplex of K} which has a common edge with a 2-simplex s € K; (j # k) is said to be an adjoint
(simplex) of s and is denoted by s’.

(iv) For each pair of a 2-simplex s € K; and its adjoint s’ € K} with a common edge e, either one of the
following three cases (a), (b) and (c) occurs.

(a) All edges of s and s’ are linear, and thus both s and s’ are natural simplices.
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(b) ¢,(s) is a curvilinear triangle such that ¢;(e) is a strictly concave arc w.r.t. ¢;(s), s’ is a natural
simplex, and all edges of s and s’ except for e are linear (cf. Fig. 1). Then s is called a minor simplez.
The case where s’ is a minor simplex and s is its adjoint may also occur.

(c) ¢j(s) is a curvilinear triangle such that ¢;(e) is a strictly convex arc w.r.t. ¢;(s), s’ is a natural
simplex, and all edges of s and s’ except for e are linear (cf. Fig. 2). Then s is called a major simplex.
The case where s’ is a major simplex and s is its adjoint may also occur.

If s is a minor or major simplex of K, then it is assumed that |s'| C U; for its adjoint s'.

wj(e) ©j(e)

\

@i(s) pile)

. . . . C
Fig. 1 Minor simplex s and its adjoint s Fig. 2 Major simplex s and its adjoint &’

(v) For each 2-simplex s € K; (j = 1,--- ,m), d(g;(s)) < h, where throughout the present paper we
denote the diameter of a region G by d(G).

Next, we assume that for the fixed ® the class of the triangulations K = K" satisfies the following
conditions (i') and (ii'):

(i') For each j = 1,---,m, the union of carriers of all minor and major simplices of K, and all their
adjoints is contained in a closed subset R; of U; N Q which is independent of the individual triangulation
K.

(i') The number N of minor and major simplices of K satisfies the inequality: N < M/h, where M is
a constant which is independent of the individual triangulation K.

1.3. Normal subdivision of triangulation K. For a triangulation K = K" of Q with width h
associated to ® we can construct a subdivision K! = K1 /2 called the normal subdivision of K = K" by
the following procedure:

(i) K is the sum of the subtriangulations K7{,--- , K}, which are the subdivisions of Ky,--- , Ky, re-
spectively which are defined in the following (ii) and (iii).

(ii) If s € K is a natural simplex, then s is subdivided to four 2-simplices sy, 52, 53 and s4 of K ]1 so that
@j(s1),95(s2),p;(s3) and ¢;(s4) are mutually congruent ordinary triangles as in Fig. 3.

(iii) Let s € K; and s’ € K}, be a minor (or major) simplex and its adjoint respectively with a common

N

©;j(s3) p;j(s1)

I N

Fig. 3 Normal subdivision of natural simplex
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edge e. We subdivide the edge e to two edges e; and es so that ¢ (e;) and g (e2) have the same length.
Then we subdivide the simplex s to two minor (or major resp.) simplices s; and so of Kjl and, two natural
simplices s3 and s4 of K ]1 as in Fig. 4. Here we note that such a subdivision is always possible if A is
sufficiently small.

We can see that the normal subdivision K = 377" K} is a triangulation of Q with width h/2 + O(h?)
associated to @ (cf. §1 of [14]).

1.4. Naturalized triangulation. For each minor (or major) simplex s € K; we define the naturalized
simplez fjs of s as the 2-simplex such that |s| C |hs| (|is| C |s| resp.) and ¢;(4s) is the ordinary triangle
which has two common sides with ¢;(s). Further we define a 2-simplex bf = bl(s) (§¢ = §¢(s) resp.) with

two edges whose carrier is the closed region |is| — |s| (|s| — |as| resp.). be(s) (B€(s) resp.) is called the
deficient (excessive resp.) lune of s.

Each triple of a minor (or major) simplex s € K}, its adjoint s’ € K}, and its deficient lune b¢ (excessive
lune §¢ resp.) is denoted by (s,s’,b€) ((s,s’,8€) resp.), and is called a ¢riple for a minor (major resp.)
simplex s or for a deficient (excessive resp.) lune bl (§€ resp.) (cf. Fig. 5), where it is assumed that
|b€| C |s'| for each (s,s’,bf) whose condition is always satisfied if h is sufficiently small. For simplicity of
notation, we also denote bl = bl(s) or #¢ = #¢(s) by £ = £(s). If a minor or major simplex s is in K, then
we say that £ = £(s) is a lune of K; and write £ € K.

Now we shall define the naturalized triangulation K' associated to K. First, K} (j = 1,---,m) are
defined as triangulations such that the collection of all 2-simplices of K’} consists of all natural 2-simplices
of K;, and of all naturalized simplices of minor or major ones of K;. Then the triangulation K’ is defined
as the sum of K ; ( =1,---,m). We should note that K’ is no longer a triangulaton of {2, and also is not
an ordinary triangulation.

1.5. Parametrization of lunar domains. Let (s,s',f) be a triple for an arbitrary deficient or

excessive lune £, and let e; and e2 be two edges of £ so oriented that e; C 9(s) and e; C ds. Further, let

4 pjes) / piez)
;(61) / W pjle1)
NG S N

Fig.4 Normal subdivision of minor simplex and major one. e; and e» are so determined that @i (e1) and @i (e2) have
the same length.

0;(be) ;)

‘7 it

Fig. 5 Triple (s,s’,bf) for a minor simplex and triple (s, s', #£) for a major simplex
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Z'=(1—-t)z1 +tzg and ¢" = (1 —1¢){1 +t¢2 (0 <t <1) be parameter representations of the oriented
segments ;(e1) and @g(e2) respectively. The last representation induces a parameter representation of
the curve gj(ez): 2" = ¢¥((1 — t)¢1 +t¢2) (0 <t < 1), where z = 9(¢) = ¢; 0 ;' (¢). Then we obtain a
parameter representation of the lunar domain ¢, (¢):

(1.1) z = 2(t,7) = (1—1)2" +72"

= Q-7 ((L-tzr +tze) +T7P((1 -G +t() (0<t<L, 0<7 <),

1.6. Area of lune.

estimate holds:

Lemma 1.1. Let (s,s',£) be a triple for an arbitrary deficient or excessive lune £. Then, the following
h3 ,lpll
(1.2 ) < B (|55

=+ &hy |,
¥(G1)? 1)
where throughout the present paper we denote the area of a region G by A(G), z = ¥(¢) = ¢j o ¢; ' (C),

h1 =d(p;(£)), (1 is one of the vertices of the lunar domain ¢r(£) and k > 0 is a constant depending only

on Y.
See Lemma 1.1 of [14] for the proof.

§2. Classes of functions

2.1 Class G. By G we denote the class of all locally single-valued continuous functions v on Q = QUOS,
for which the partial derivatives dv/0z and dv/dy with respect to the local parameter z = = + iy exist
and are continuous on ) at most except for a finite number of rectifiable curves on €, and for which
the Dirichlet integral D(v) = Dgq(v) is finite, where the Dirichlet integral Dg(v) is defined by Dg(v) =
Iq ((81) /8z)* + (8v/ 6y)2) dzdy for each subregion G of Q.

2.2. Subclass ¥ of G. We define a subclass ¥ = X(K) of G, called the comparable class (with u), as
the class of functions v, which satisfy the following conditions (i) ~ (iv):

(i) vn € G.

(ii) If s € K; (j =1,--- ,m) is a natural simplex which is not an adjoint of any minor or major simplex,
then vy, is a linear expression ax+by +c (a, b, ¢ : constants) of local variables z and y (z = ¢, (p) = z+1y)
on ;(s).

(iii) Let (s, s’,bf) be a triple for a minor simplex s. Then v, is a linear expression of local variables on
each of ¢;(s) and pr(s') — i (b€) respectively, and harmonic in |bé].

(iv) Let (s,s',4¢) be a triple for a major simplex s. Then vy, is a linear expression of local variables on
each of ¢;(is) and ¢k (s’) respectively, and harmonic in |§¢|.

2.3. Class ¥’ of functions. Let K' be the naturalized triangulation associated to K. For each
function v, € X, we define the function v;, on K' associated to vy as the function v} which satisfies the
following conditions (i) and (ii):

(i) For each 2-simplex s € K} (j =1,---,m), v}, is a linear expression of local variables on ¢;(s).

(ii) v}, = vp, on the carrier of K minus all lunes.

We should note that the function v}, is defined just twice on each deficient lune b¢, while it is never
defined on any excessive lune /. Hereafter in the former case, for each triple (s, s’,bf) we shall denote the
branches of v, on §s € K and s’ € Kj, by v}, and v, respectively.

The class of all functions v}, associated to v, € X is denoted by ¥’ = ¥/(K') and called the computable
class. Let L' be a subcomplex of K’, and let v}, and v}, be functions in ¥'. The mized Dirichlet integral
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Dy (vl ,¢}) of v, and v, over L' and the Dirichlet integral Dy (v}) of v, over L' are defined by 2
b Vh h h h h

Ovy, 0 Ov}, 0y,
Dy (vy,¥p) = Z// (Bzh (.;ih 8; ;Zh)d:cdy and

seLl’!

Dy (v}) = D (v, v), resp.

Further, for simplicity we set D(v}, ;) = Dk (v},,%;) and D(v},) = Dk (v},), where D(v;,) can be nu-
merically calculated if v} is obtained. We see that v}, = F(vs) defines a one-to-one mapping of ¥ onto
)

2.4. Finite element interpolations. Let v be a function of G. We define the finite element
interpolation ¥ of v in the class ¥ as the function uniquely determined by the following conditions (i) and
(ii):

(i) v e %

(ii) 9(p) = v(p) at the carrier p of each 0-simplex of K.

2.5. Harmonic functions on a lune.

Lemma 2.1. Let £ = {(s) be a deficient or excessive lune of K;, let e; and ez be the edges of £ so
oriented that e; C O(4is) and ex C 8s, and q1 and g be the vertices of £ such that Oey = Oes = g2 —q1. Let
X and p be the length of the segments p;(e1) and px(e2) respectively, and let 9 (and &) be the angle between
the oriented segment ;(e1) (px(e2) resp.) and the z-axis (the &-axis resp.), where z = ¢;(p) = T +1y and
C=wpr(p) =& +in.

Let H be the harmonic function in £ which is continuous on £, and satisfies the boundary conditions:
H =ax+by+conpjler) and H = af + fn+~ on pr(ez), where a,b,c,a, 3 and vy are constants. When

we set

_ H(g) - H(a)Y ' (2)]*
(2.1) e(H) = A(‘Pj (£)) - (—N——) g}?‘g (Re(ei(ﬂvé)(pl(z)))Q’

the following inequality holds
(2.2) Dy(H) < ee(H),

where Dy(H) = ffm((BH/&r)2 + (8H/dy)*)dzdy, ¢ = ¢(2) = @k 0 ;' (2) and hereafter the notation
(2.1) is preserved. Further the inequalities

ey et < Aley0) (BN by < A0 + 1)1+ w0

hold, where by k > 0 we denote a constant depending only on the local mapping ( = (z) and hereafter the
notation is preserved.

Proof. We make use of the parameter representation (1.1) of the lunar domain ¢;(£) and we preserve
the notations in §1.5. Without loss of generality we may assume that the oriented segments ¢;(e;) and
@r(es) lie on the real axes Im z = 0 and Im ¢ = 0 respectively, and 2 =0, 22 = A (A > 0), (; =0 and
G =p (1> 0). Then the harmonic function H satisfies the boundary conditions: H = ax + c on ¢;(e1)
and H = aRe p(z) + v on p;(es2), and H(g;) =c =+ and H(g2) — H(q1) = a)X = ap.

Let © = O(2) be the functon on ¢;(¢) obtained by setting ©(z) = aAt + ¢ at a point z = 2(t,7) € ;(£).
Since the function © o ; satisfies the common boundary condition as H and H is harmonic in £, the
inequality Dy(H) < D¢(© o ;) holds. Further, when we note that Re ¢'({) > 0 (z = ¥({) = ¢~ '(¢)) on

2 We shall use the common notations D( , ) and D( ) for both mixed and ordinary Dirichlet integrals of functions of the
classes G and ¥'.
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wk(£) for a sufficiently small h, we can verify that
laf A < max {|a| _ ol }
[ =7)A+Tpy(ut)] — " Re ¢'(ut)

0 () ()P
< —_— < —_
< ma"{'“" ol 2 Reg (@) ) S 1 B Re i (7)

|grad © = |a| A |grad t] =

Therefore the inequality (2.2) is obtained.

By making use of the power series expansion of ¢’ around a vertex z = 0 of the lunar domain ;(¢) and
the relation p = ¢(A), we can verify that max, () [¢'(2)| < ¢’ (0)[(1 + kh), max,, () |¢'(2)/Re¢’(z)| <
#'(0)/Re ¢ (0)[(1 + kh), p 2 (|¢'(0)] = Kh) [, (o) ld2l = A(l¢'(0)] — kh) and |¢'(0)/Re ¢'(0)] < 1+&h
hold. Therefore we have the inequality

o'(2)]2
(2.4) || g%ﬁz—)—l < la| (1 + &h).
(2.1) and (2.4) imply the inequality (2.3).

Lemma 2.2. Let vy, be a function of the class X.

(i) For each §£ € K; and its triple (s,s',§f) the inequalities

(2.5) Dye(vn) < epe(vi) < Ale;(#0) |(Vop)usl® (1 + sh)

hold, where hereafter by (Vuy,)ys we denote the constant gradient of v, on ;(his).
(ii) If for each bl € K; and its triple (s, s',bl) we set H = v}, ,+v},,, — vy, on bl (see §2.3 for the notations),
then the inequalities

(2.6) Dye(H) < e5(vh) < A(p;(00)) [Vup,* (1+ &h)

hold, where hereafter by Vv}, we denote the constant gradient of v}, on ¢;(hs).
(i) The inequality

(2.7) D(vs) < D(vp) +e(v)
holds, where

28)  e@h) = Y ew®h)+ Y (eelvh)

tteK ble K
42 (Dat(0h) /2 Doelthe )2 + Dae(vh) 22ua(0h)/? + Diyo(vh ) 2e0e(vh) /2) )

and e(vy) = O(h®). Further by the definition (2.1) of epe(vh) and ey(vh), and the equalities Dyy(v},) =
A(p; 00))|V},|? and Dy(v),) = A(pr (b€))| Vs, |2, we see that e(v),) is a quantity which can be numeri-
cally calculated if v, is obtained.

Proof. (i) Since the fuction v, on §¢ has the common property as the function H of Lemma 2.1, the
inequalities (2.5) hold.

(ii) Since the function H has the common property as H of Lemma 2.1, and H(q:) = v} (¢1) and
H(g2) = v},(g2), the inequalities (2.6) hold.

(iii) By the definition of v, and v}, the equality

(2.9) D(vh) = D(v;) = > Dye(vn)+ »_ (Du(’vh) — Dye(vhe) = Dbz(vks'))

teeK bleK

holds and further, for each triple (s, s’,bf) the inequality

(2.10) Dye(vr)Y? < Dyy(vh, )% + Dyy(v}y)/? + Dyy(H)'?
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holds. (2.9), (2.10), (2.5) and (2.6) imply the inequality (2.7). Further by Lemma 1.1 and (ii’) of §1.2,
e(v},) = O(h?) is obtained.

§3. Finite element approximations

3.1 Formulation of problems. The ring domain 2 defined in §1.1 can be conformally mapped onto
an annulus A = {w | 1 < |w| < R} for a suitably chosen number R so that Cy and C; are mapped onto
Tp ={w||w| =1} and I'y = {w | |w| = R} resp. Then the modulus M (Q) of the ring domain ) is defined
by M(Q) = log R, which is uniquely determined by Q. Our aim is to determine the modulus M () of a
ring domain 2 by our finite element methods.

3.2. Classes F and F. By F we denote the subclass of G defined in §2.1 which consists of all
single-valued functions v on  satisfying the boundary conditions v = 0 on Cy and v = 1 on C,. Further,
by F we denote the subclass of G which consists of all locally single-valued functons v on § satisfying the
condition [, dv =1 for every closed curve C' homotopic to C.

By u we denote the uniquely determined function of F which is harmonic on Q. Also, by & we denote
the function of F which is harmonic on Q) and satisfies the condition xdii = 0 along 92, where by *du
we denote the conjugate differential of dii. The function @ is uniquely determined except for an additive
constant.

By (vi) of §1.1, and the boundary conditions of the functions u and i, they can be harmonically continued
over ¢;(U; N 0N) on each ¢;(U;) even in the case where some critical point p, belongs to U;. Hence, by
the transformation of local parameter of (vi) of §1.1 all singularities of u and @ at the critical points of 9
vanish.

3.3. Minimalities. The modulus M(Q) is characterized by the following minimal properties, which
can be proved by standard arguments using Green’s formula.

Lemma 3.1. The equalities

2T o M)
O D(u) = E,Iél%D(v) and e D(a) = f}rgfr_l D(v)

(3.1)

hold. The both minimums of the right hand sides of (3.1) are attained if and only if v = u and v = @ +const.
respectively.

We call v and @ the harmonic solutions in F and F respectively. Let S = ¥ N F, S=YnF )
S' = {v}, | vy = F(vs), vn € S} and §' = {v}, | v}, = F(uvs), vn € S}. we shall obtain finite element
approximations of u (and @) in the classes S and S’ (S and S’ resp.), and error estimates of them for u
(and @ resp.). By §3.2 we see that the finite element approximations of u and @ express their singular
properties exactly near each critical point of 892.

3.4. Finite element approximations w, and ©,. By wp and @, we denote the functions of S and
S resp. which satisfy the conditions
(3.2) D(wr) = min D(vy) and D(&p) = min D(vg)  resp.

v ES v ES
We call wy, and @y, the finite element approzimations of u and i in S and S respectively. The following
lemma follows from the minimal properties (3.2) by standard arguments.

Lemma 3.2. (i) The following inequalities hold:

D(vh —wp) = D(vy) — D(wa) for each v, € S and
D(vp, — ©p) = D(vg) ~ D(@p) for each v, € S.
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(ii) The functions wy, and @p have the minimal properties
D(wp —u) = min D(vy, —u) and D(@p—4) = min D(v, — @),
vRES vp €S
where the minimums are attained if and only if vy, = wp and vy, = Op + const. respectively.
3.5. Finite element approximations u, and @}. By u}, and 4} we denote the functions of S’ and
S’ respectively which satisfy the conditions
(3.3) D(uj) = min D(v;) and D(d,) = min D(v;)  resp.
v}, €S’ v, €S’
We call uj, and @}, the finite element approzimations of w and @ in S’ and S’ respectively. The functons
uj, and 4} can be obtained by solving some systems of linear equations.
3.6. Lemmma of Bramble and Zlamal. The following lemma is due to J. H. Bramble and M. Zlamal
(cf. Theorem 2 of [3]).
Lemma 3.3. Let A be a closed triangle on the z-plane (z = z + iy) with d(A) < h and let v be a
function of the class C? defined on A such that v = 0 at each verter of A. Then, the inequality

o\ (o
TG+ (3)) e
B 82v\? 82y \ 82v\?
= e //A ((%> *2 (away) " (a_yf) dody

holds, where B is an absolute constant and 0 is the smallest interior angle of the triangle A.

3.7. Approximations by w; and @y.
Theorem 3.1. Let u and @ be the harmonic solutions in F and F respectively defined in §3.3, and let

wr and Gy, be the finite element approzimations of u and @ in S and S respectively. Then,

(34) D(wh - u)

2 2
0u 32
+2| ——
i ou\ o\
+Cjzlsor]n%x) (((%) + (@)) )

where B is an absolute constant, C is a constant dependent only on transformations of local parameters, 0

is the smallest value of interior angles of all triangles ;(s) (s € Kj; j=1,--- ,m), and R; (j =1,--- ,m)
are the closed subsets of U; N Q defined in (') of §1.2. Further, when we replace u and wy, by @ and Op,
respectively, the inequality (3.4) also holds.

Proof.  First, by (ii) of Lemma 3.2,

(3.5) D(wn —u) < D(@—wu),

where % is the finite element interpolation of u (see §2.4). Hence it is sufficient to estimate D(u — u). We

can write D(u — u) as

(3.6) D@@-u) = Y Y D.(i-u).

i=1 se€kKj;

Here we note that u o goj_l (j = 1,--- ,m) is of the class C? on ¢;(U; N Q) (see §3.2). If s is a natural
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simplex of K; which is not an adjoint of any minor simplex, then, by Lemma 3.3,

(3.7) Dy(u —u)

B 2u\ %u \ a2\’
< 2 e oY gu ‘
~ sin%6 & //W(s) ((3352) 2 (6933?/) * (31!2) dardy

For simplicity, we denote the right hand side of (3.7) by I[¢;(s)].
If (s, s',£) is a triple for a major simplex s of K;, then, by Lemma 3.3

(3.8) Dy(a—u) < I[p;j(1s)] + De(i — u) < I[p;(ts)] + 2 De(W) + 2 De(u).

Here by (i) of Lemma 2.2

Au\? o\’
(3.9) D) < Ales(8) max ((a—x) n (@)> and
(3.10) De(@) < Alg;(0)) [(V)zel? (1 + k).

Further, by using the mean value theorem, we can prove

s (@)
~ sin?8@ (k) Oz Jy '

If (s,8',£) is a triple for a minor simplex s of K, then by Lemma 3.3

(3.11) [(V@)yal?

(3.12) Dy(u—u) < I[p;(1s)] and

(3.13) Dy(a~u) < Ifpr(s)]+ De(d - u)
< Tlpr(s)] + 2 De(@) + 2 De(u).

Here for D;(u) the inequality (3.9) holds. We denote the branches of the function &' = F'(u) on 4s and s’

by @, and @, respectively, and we introduce a function H on ¢ by H = u, + u,, — 4. Then
(3.14) Dy(@) < 3(D£(a;) + Dy(al) +D2(H)).

Here, by (3.11) and (ii) of Lemma 2.2

(3.15) Dy(ay) = A(p; (D) |V,

8 ou Y ou\

< Garg e ) ma ((a) (&) ) |

(3.16) De(iy) = A(pr(0) [V ?

8 ou\ ou\?

< sin” Aler(5) - ;2(%)’() ((%) i (6—77>> and

8 o\ [ouY

(3.17) DUH) < 5 Ali(0) - max ((a—) n (—35)) (L + wh).

By (3.5) ~ (3.17), Lemma 1.1 and (ii’) of §1.2, the estimate (3.4) is obtained. By a similar method the

remained part is proved.
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3.8. Approximations by v and a},.

Theorem 3.2. Let u and @ be the harmonic solutions in F and F respectively defined in §3.3, let
u}, and @), be the finite element approzimations of u and @ in the classes S' and S' respectively, and let
up = F71(u}) and 4, = F~1(a},).

(i) The estimate

(3.18) D(up — u)

h? i 2uY ?u \ ?u\
< B — 2{ —— — dzd
" sin®f ( 2 /%(IKJ‘I) (<5$2) * (39351/) ’ (Byz) i
i ou\ ou\?
I — —
e ;Jﬁ%}:) ((6‘"”) " <By> >>

holds, where B' and C' are constants dependent only on transformations of local parameters, and other

notations are the same as in Theorem 3.1. Further, when we replace u and up, by @ and ap respectively,
the estimate (3.18)also holds.
(ii) The following estimate holds with (u},) defined by (2.8):

(3.19) D(u) < D(up,) + &(up,).

Further, when we replace u and uj, by @ and @) respectively, the estimate (3.19) also holds.
By (iii) of Lemma 2.2, e(u},) is a quantity of O(h?) which can be numerically calculated if u}, is obtained.
Proof. (i) We note that

(3.20) D(up, —u) < 2D(wp —u) +2D(up — wp).
Here, by (i) of Lemma 3.2, (iii) of Lemma 2.2, (3.3), and the definition of w; and wy,

D(un—wn) = D(un) — D(wn) < (D(uy) +e(uy)) — D(wn)

< D(wh) = D(wn) +£(h) < D (Doe(he) + Doe(wha) ) +(uh).
bee K

By (2.8) the last inequality implies

(3.21) D(up —wh) < ) egelup)
ek

+ > (3eve(uh) + 2(Dua(wh,) + Doe(th)) + (Doewhs) + Dielh)) ).
bte K

We shall obtain an estimate for each term of the right hand side of (3.21). First, we have the estimate

(3.22) Dye(uhy,) = Alpy0)) [Vu? = 220D py )

A(p;(s)

Alp;(00))
= 2 Ae;()

< 2 2200 b uy -+ 246000 (3] + () ).

(Ds(uh —u) + Ds(u))

~ Alpi(s))
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Since the inequality A(yp;(ks)) > (h2/4)sin@ (h1 = d(p;(4s))) holds, by Lemma 1.1

Alp; (00)  _ A(p; (v6)) h LAl (SY)
(329) SO0 = T e < T (R )
with the notations in Lemma 1.1.  (3.22) and (3.23) imply the estimate
(3.24) > Duelupy)
beeK

02 3" D uh—u)-f—QZ 3 Alp; (00)) - max((au) + (35)2)

J=1bLEK; J=1bteK;

where C4 is a constant dependent only on the transformations of local parameters. Next, by (i) of Lemma
2.2 we have the inequality

(3.25) ege(uh) < Alp; (#0) [(Vup)s|* (1 + wh),

and thus a similar estimate as (3.24) for )y, x €4¢(u}) is obtained. Since similar estimates as (3.24) for
other terms of the right hand side of (3.21) are obtained, from (3.21) it follows that

(3.26) D(up —wp) < %(D(uh —u) + D(wp — u))

233 (a0 (3 () oo (3 ()

where B; and B, are constants dependent only on the transformations of local parameters. (3.20), (3.26),
Theorem 3.1, Lemma 1.1 and (il’) of §1.2 yield the estimate (3.18).

By a similar method the remained part of (i) is proved.

(ii) By Lemma 3.1 and (iii) of Lemma 2.2, we have the estimate

(3.27) D(u) < D(un) < D(up,) +&(up,).

By a similar method the remained part of (ii) is proved.

§4. Application

4.1. Estimation of modulus. Let M(f2) be the modulus of a ring domain , let v and @ be
the harmonic solutions in the classes F and F respectively, and let u) and ) be the finite element
approximations of u and @ in the classes S’ and S’ respectively. Then by Lemma 3.1 and (ii) of Theorem
3.2, we have upper and lower bounds for the modulus M (Q):

2

1) D) + e(a})

< M(Q) < 2m(D(dy) + (i),

where e(u},) and e(@},) are the numerically computable quantities defined by (2.8).

4.2. Circular domain with a slit. Let 2 be the ring domain on the z-plane defined by Q = {z | |2] <
1}-{2| —a<z<a,y=0} (z=z+1iy; 0<a<1),andlet Cy and C; be the boundary components of
Qlyingon {z]| —a<z<a, y=0}and {z| |2| =1} (# = = + iy) respectively (cf. Fig. 6). Then for a
given value of a the exact value of the modulus M (Q) of the domain 2 can be numerically calculated by
using of the elliptic integral (cf. p.62 of [16]).

In the cases where a are sufficiently near to 1 (circular domain with a long slit) and sufficiently near to
0 (circular domain with a short slit), we aim to obtain good upper and lower approximate values of M ((2).

4.3. Numerical examples of circular domains with a long slit. Now we shall treat of the cases
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Fig. 6 A circular domain with a slit

where o is sufficiently near to 1. First, as in Fig. 7 we determine the collection ® of local parameters
G = 1(2), (o = p2(2) and (3 = ¢3(2), and parametric regions Gy, G2 and G3 of the closed region
D=1{2|Rez >0, Imz >0} NQ satisfying the conditions of §1.1, where Q and D are regarded as
bordered Riemann surfaces. In Fig. 7, G; = {1 | 0 < Re(; < ag, 0 < Im{ < a7/2}, Gy = o7 H(GY),
Gy ={G |b<Re( <0, 0<ImG < 7}Ngs(D—G), Ga = ©;1(G}), Gs = D=G; UG5 and
G3 = w3(G3), where ag and b are so chosen that ag = ¢1(2a — 1) and b = —log2. In Fig. 7, though the
constant ¢ (2a — 1 < ¢ < a) may be optionally chosen, it is determined so that A|l'(z0)| = (1 — a)|!'(1)],
where I(z) = (2 — ¢)/(1 — ¢cz) and A is length of the arc between 2a — 1 and 2.

Next, as in Fig. 8 we determine the triangulation of D associated to the present & satisfying the
conditions of §1.2. We construct the triangulation K; of G; whose each 2-simplex is natural and namely in
Fig. 8, K{ is an ordinary triangulation. The triangulation K> of G2 is so constructed that each 2-simplex
s of K> is natural or minor according as |s| N |K1| = @ or |s| N | K| # 0 respectively (see K in Fig. 8),
where if some intersection is a point then it is interpreted to be vacuous. The triangulation K3 of Gj is
so constructed that each 2-simplex s of K3 is natural, minor or major according as |s| N |K; + K2| = 0,
|s| N |K1| # 0 or |s| N |K2| # 0 respectively (see K} in Fig. 8). The triangulation K of Q is obtained by
iteration of reflections of the triangulation of D. We see that the triangulation K conforms to the definition
in §1.2.

Table 1 shows the computational results of the case a = 0.9 (then ¢ = 0.8567, ¢; = 0.9748 and
c3 = 2.5979) and those for the normal subdivision K. Table 2 shows those of the case a = 0.999 (then
¢ =0.9986, c¢; = 0.9993 and c3 = 2.6286). It can be said that our results are close to the exact moduli.

4.4. Numerical examples of circular domains with a short slit. Next we treat of the cases
where a is sufficiently near to 0. We determine the collection ® of local parameters and parametric regions
of the closed region D = {z | Rez >0, Imz > 0} N Q as in Fig. 9, and construct a triangulation of each
parametric region as in Fig. 10. The remained arguments are similar to §4.3.

Here we know that by using of the mapping w = log(z/a + (22/a® — 1)1/?) the quantities: M; =
log((1/a)(1 + (1 — a®)!/?)) and M, = log((1/a)(1 + (1 + a?)'/?)) give the lower and upper bounds of
modulus M (Q) respectively: M; < M(2) < M,. In fact, the case of a = 0.1: My — M(Q) = 0.0025
and M; — M(Q?) = —0.0024, and the case of a = 0.001: My — M(Q) = 0.00000025 and M; — M(Q) =
—0.00000024. Our aim is to show that our finite element results give much better estimates than the above
ones. Table 3 shows the computational results of the case a = 0.1 (then ¢; = 1.0004) and those for the
normal subdivision K!. Table 4 shows those of the case a = 0.001 (then ¢; = 1.0000).

4.5. Square domain with a slit. Let Q be the ring domain on the z-plane defined by Q = {z | |z] <
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1, lyl<1}—{z] —a<z<a, y=0} (z=z+1iy; 0 <a<1),andlet Cy and C; be the boundary
components of Q lyingon {z | —a<z<a, y=0}and {z ||z =1, |y <1}U{z]| |z|] <1, |y| =1}
(z = z + iy) respectively (cf. Fig. 11). Then for a given value of a the exact value of the mudulus M(Q)
of the domain Q can be numerically calculated by using the elliptic integral (cf. p.63 of [16]).

4.6. Numerical examples of square domains with a long slit. Now we treat of the cases
where a of the domain 2 is sufficiently near to 1. We determine the collection ® of local parameters and
parametric regions of the closed region D = {z | Rez > 0, Im2z > 0} N Q as in Fig. 12, and construst the
triangulation of each parametric region as in Fig. 13. The remained arguments are similar to §4.3.

Table 5 shows the computational results of the case a = 0.9 (then ¢ = 0.8711, ¢ = 0.5867, c3 =
0.6544, ¢4 = 1.5996 and c5 = 0.7081) and those for the normal subdivision K*. Table 6 shows those of the
case a = 0.999 (then ¢ = 0.9986, c2 = 0.5867, c3 = 0.5805, ¢4 = 1.5378 and c5 = 0.5907).

4.7. Numerical examples of square domains with a short slit. Next we treat of the cases where
a is sufficiently near to 0. We determine the collection ® of local parameters and parametric regions of
the closed region D = {2z | Rez > 0, Imz > 0} N Q as in Fig. 14, and construst the triangulation of each
parametric region as in Fig. 15. The remained arguments are similar to the case of §4.3.

Table 7 shows the computational results of the case a = 0.1 (then ¢; = 0.6126 and ¢4 = 0.6125) and
those for the normal subdivision K. Table 8 shows those of the case a = 0.001 (then ¢; = 0.6127 and
cq = 0.6127).
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Fig. 7 Local parameters and parametric regions of a circular domain with a long slit.
c1 and cs are so determined that |d{;/dz| = |d(s/dz| at z = 2z, and [d{2/dz| = |d(s/dz| at z = zs.
—————— segment or half straight line being parallel to real axis or imaginary axis.
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Fig. 8 Triangulation of a circular domain with a long slit (a = 0.9).
A --- The local map ¢;(s) of a major simplex s;
A -+ The local map ¢;(s) of a minor simplex s.
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Fig.9 Local parameters and parametric regions of a circular domain with a short slit.
c1 is so determined that |d(1/dz| = |d(2/dz| at z = z1.
——— ... segment or half straight line being parallel to real axis or imaginary axis.
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Fig. 10 Triangulation of a circular domain with a short slit (a = 0.1).
A --- The local map ¢2(s) of a major simplex s;

A --- The local map ¢2(s) of a minor simplex s.
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Fig. 11 A square domain with a slit
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Fig. 12 Local parameters and parametric regions of a square domain with a long slit.
C2,¢3,¢4 and cs are so determined that |d(i/dz| = |d(2/dz| at z = 23, |d(a/dz| = |d(s/dz| at z = 23,
|d¢2/dz| = |dCa/dz| at z = z4 and |d{2/dz| = |d{s/dz| at z = z5, and c is determined analogously to the case

of §4.3.

- segment or half straight line being parallel to real axis or imaginary axis.
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Fig. 13 Triangulation of a square domain with a long slit (a = 0.9).
A --- The local map ¢;(s) of a major simplex s;
A --- The local map ¢;(s) of a minor simplex s.
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Fig. 14 Local parameters and parametric regions of a square domain with a short slit.
¢1 and ¢4 are so determined that |d(1/dz| = |d{s/dz| at z = z1 and |d¢a/dz| = |dG2/dz| at z = z4.
——— ... segment or half straight line being parallel to real axis or imaginary axis.
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Fig. 15 Triangulation of a square domain with a short slit (¢ = 0.1).
A .. The local map ¢;(s) of a major simplex s;
A --- The local map g;(s) of a minor simplex s.
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Table 1 Modulus of a circular domain with a long slit (a = 0.9).

Exact D(u) =9.26303, D(@) = 0.1079559,
values M(Q) = 2x/D(u) = 0.678307.
Original triangulation
(h =0.1x4/2, N(s) = 5456, N(q) = 2811)
Upper bound
D(@},) = 0.1079447, e(;,) = 0.0000409;
M = 2n(D(it}) + e(@})) = 0.678494,
M — M(Q) = 0.000186.
Lower bound
D(u}) = 9.26564, £(u},) = 0.00922;
Finite | M = 2n/(D(u}) + (u})) = 0.677442,
element | M — M(2) = —0.000865.
approxi- | Normal subdivision
mations | (h =0.05x+/2, N(s) = 21824, N(q) = 11077)

Upper bound
D(ay,) = 0.1079532, e(d},) = 0.0000103;

M = 2n(D(@,) + &(@},)) = 0.678354,
M — M(Q) = 0.000047.

Lower bound

D(u}) = 9.26369, e(u},) = 0.00229;
M = 2r/(D(u}) + e(u})) = 0.678092,
M — M(Q) = —0.000216.

N(s): Number of 2-simplices, N(g): Number of 0-simplices.
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Table 2 Modulus of a circular domain with a long slit (a = 0.999).

Exact D(u) = 21.11935, D(a) = 0.04734994,
values M(Q) = 2n/D(u) = 0.2975085.
Original triangulation
(h=0.1x4/2, N(s) = 11908, N(q) = 6133)
Upper bound
D(a},) = 0.04734817, e(4@3) = 0.00000719;
M = 2m(D(a},) + e(@},)) = 0.2975425,
M — M(9Q) = 0.0000341.
Lower bound
D(u},) = 21.12189, e(u},) = 0.00820;
Finite M =2n/(D(u},) + e(uy,)) = 0.2973572,
element | M — M(Q) = —0.0001513.
approxi- | Normal subdivision
mations | (h = 0.05x+/2, N(s) = 47632, N(q) = 24173)

Upper bound
D(a},) = 0.04734950, e(ay,) = 0.00000181;

M = 2n(D(@}) + £(i} ) = 0.2975170,
M — M(£) = 0.0000086.

Lower bound

D(ul) = 21.11999, £(u}) = 0.00204;
M = 27/(D(u}) + &(u})) = 0.2974708,
M — M(Q) = —0.0000377.

N(s): Number of 2-simplices, N(g): Number of 0-simplices.
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Table 3 Modulus of a circular domain with a short slit (a = 0.1).

Exact | D(u) = 2.09738753, D(@) = 0.476783610,
values M(Q) =2r/D(u) = 2.9957198.

Original triangulation
(h=0.1x+/2, N(s) = 3840, N(q) = 1953)

Upper bound
D(w},) = 0.476783758, e(d;,) = 0.00001307;

M = 2n(D(a},) + e(@h)) = 2.9958029,
M — M(Q) = 0.0000831.

Lower bound

D(uy,) = 2.09738824, £(u},) = 0.0000144;
Finite M =27 /(D(uy) + e(uy,)) = 2.9956982,
element | M — M(Q2) = —0.0000215.

approxi- | Normal subdivision
mations | (h =0.05%+/2, N(s) = 15360, N(q) = 7745)

Upper bound

D(@},) = 0.476783647, (i), = 0.00000326;
M = 2n(D(@,) + e(ill,)) = 2.9957405,

M — M(Q) = 0.0000207.

Lower bound

D(u},) = 2.09738771, e(u},) = 0.0000036;
M =2n/(D(u},) + e(u},)) = 2.9957144,
M — M(©2) = —0.0000054.

N(s): Number of 2-simplices, N(q): Number of 0-simplices.
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Table 4 Modulus of a circular domain with a short slit (a = 0.001).

Exact D(u) = 0.82663675012588194, D(a1) = 1.20972119839544751,
values M(Q) = 2x/D(u) = 7.60090245954.
Original triangulation
(h=0.1x+/2, N(s) = 9728, N(q) = 4897)
Upper bound
D(@},) = 1.20972119839544898, (a},) = 0.000000001304;
M = 2n(D(@}) + (@) = 7.60090246774,
M — M () = 0.00000000819.
Lower bound
D(u},) = 0.82663675012588301, £(u},) = 0.000000000223;
Finite M =2n/(D(u}) + e(u},)) = 7.60090245749,
element | M — M(Q) = —0.00000000205.
approxi- | Normal subdivision
mations | (h = 0.05%x+/2, N(s) = 38912, N(q) = 19521)

Upper bound

D(a}) = 1.20972119839544788, (i}, ) = 0.000000000326;
M = 2n(D(@}) + e(@,)) = 7.60090246159,

M — M(£) = 0.00000000205.

Lower bound

D(u}) = 0.82663675012588221, £(uj,) = 0.000000000056;
M =2r/(D(u}) + e(u})) = 7.60090245903,

M — M () = —0.00000000051.

N(s): Number of 2-simplices, N(q): Number of 0-simplices.
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Table 5 Modulus of a square domain with a long slit (a = 0.9).
Exact D(u) = 8.69309, D(@) = 0.1150338,
values M) =27 /D(u) = 0.722778.
Original triangulation
(h =0.05%+/2, N(s) =11784, N(q) = 5109)
Upper bound
D(4},) = 0.1150267, e(@;,) = 0.0000473;
M = 2n(D(a}) + e(@},)) = 0.723031,
M — M(Q) = 0.000253.
Lower bound
D(uy,) = 8.69506, e(uy,) = 0.00693;
Finite M =2n/(D(u},) + e(u},)) = 0.722039,
element | M — M(Q) = —0.000740.
approxi- | Normal subdivision
mations | (h = 0.025%x+/2, N(s) = 47136, N(q) = 20201)

Upper bound

D(@),) = 0.1150321, e(@,) = 0.0000118;
M =2 (D(@,) + (@) = 0.722842,
M — M(Q) = 0.000063.

Lower bound

D(u}) = 8.69359, &(u}) = 0.00173;
M = 2n/(D(u}) + e(u})) = 0.722594,
M — M() = —0.000185.

N (s): Number of 2-simplices,

N(q): Number of 0-simplices.

29



30

Hisao Mizumoto and Heihachiro Hara

Table 6 Modulus of a square domain with a long slit (@ = 0.999).

Exact D(u) = 20.4310, D(@) = 0.0489452,
values M(Q) = 2r/D(u) = 0.307532.
Original triangulation
(h = 0.05%x+4/2, N(s) = 16816, N(g) = 8619)
Upper bound
D(ay,) = 0.0489440, e(aj,) = 0.0000109;
M = 2n(D(@},) +e(@})) = 0.307593,
M — M () = 0.000061.
Lower bound
D(u}) = 20.4333, (u}) = 0.0082;
Finite | M = 2x/(D(u}) + e(u})) = 0.307374,
element | M — M(Q) = —0.000157.
approxi- { Normal subdivision
mations | (h = 0.025x+/2, N(s) = 67264, N(q) = 34053)

Upper bound

D(@}) = 0.0489449, ¢(a},) = 0.0000027;
M = 2n(D(ii},) + £(@})) = 0.307547,
M — M(2) = 0.000015.

Lower bound

D(u}) = 20.4316, (u},) = 0.0020;

M = 27/(D(u}) +e(u})) = 0.307493,
M — M()) = —0.000039.

N(s): Number of 2-simplices, N(g): Number of 0-simplices.




Table 7 Modulus of a square domain with a short slit (a = 0.1).

Moduli of Ring Domains

Exact D(u) = 2.045656, D(@) = 0.488841,
values M(Q) =2n/D(u) = 3.071477.
Original triangulation
(h =0.05x+/2, N(s) = 6424, N(q) = 3261)
Upper bound
D(ay,) = 0.488915, e(a},) = 0.000275;
M = 27(D(@},) + e(@})) = 3.073667,
M — M(Q) = 0.002190.
Lower bound
D(u}) = 2.045456, £(u)}) = 0.000451;
Finite M =2r/(D(uy,) + e(u},)) = 3.071100,
element | M — M(Q) = —0.000377.
approxi- | Normal subdivision
mations | (h = 0.025x+/2, N(s) = 25696, N(q) = 12945)

Upper bound
D(ay,) = 0.488859, &(;,) = 0.000069;

M = 2r(D(i},) + e(@i},)) = 3.072024,
M — M() = 0.000547.

Lower bound

D(u}) = 2.045606, (u},) = 0.000113;
M =27/(D(uy,) + e(uy,)) = 3.071382,
M — M(Q) = —0.000096.

N(s): Number of 2-simplices,

N(g): Number of 0-simplices.
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Table 8 Modulus of a square domain with a short slit (a = 0.001).

Exact | D(u) = 0.818479, D(a) = 1.221779,
values M(Q) =2n/D(u) = 7.676664.

Original triangulation
(h=0.05%+/2, N(s) = 15544, N(q) = 7821)

Upper bound

D(it}) = 1.221853, £(ii},) = 0.000275;
W = 2n(D(ill,) + e(it},)) = 7.678854,
M — M(Q) = 0.002190.

Lower bound

D(u},) = 0.818447, e(u},) = 0.000072;
Finite M =2n/(D(u},) + e(uy,)) = 7.676287,
element | M — M(Q2) = —0.000377.

approxi- | Normal subdivision
mations | (h = 0.025x+/2, N(s) = 62176, N(q) = 31185)

Upper bound
D(a}) = 1.221798, e(u},) = 0.000069;

M = 2n(D(@,) + &(@,)) = 7.677211,
M — M() = 0.000547.

Lower bound

D(ul) = 0.818471, e(u}) = 0.000018;
M = 271/(D(u}) + e(u},)) = 7.676568,
M — M(2) = —0.000095.

N (s): Number of 2-simplices, N(g): Number of O-simplices.




